德源科技 
德源科技德源科技
公司簡介訂購方式匯款確認檔案下載 聯絡我們保固說明訂單查詢討論區
電子郵件:

密碼:

忘記密碼
加入會員
  首頁 | 原廠 Arduino® | 特殊服務設計 | 轉接座及轉接板/麵包板 | 開發板/燒錄器/模擬器 | 相容 For Arudino® 週邊及配件 | OKdo系列 | Saleae 系列 | Adafruit 系列 | ArduCam 系列 | Camera 攝像頭 | ROCK 系列 | Debix系列開發板 | Raspberry Pi 樹莓派 | Banana Pi 香蕉派 | BeagleBone 狗骨頭 | M5Stack系列 | Micro:bit (BBC)系列 | NVIDIA Jetson Nano系列 | Pololu 系列 | Pycom 系列 | Seeed 系列 | Sparkfun 系列 | WeMos 系列 | 傳感器 | Cubieboard/CubieTruck系列 | Firefly 系列 | Microduino系列 | Orange Pi 香橙派 | PCB板 | PLC 系列 | Robot 機器人 | UDOO 系列 | RedBearLab 系列 | LattePanda系列 | LittleBits 系列 | Libelium 系列 | Luxonis 相機系列 | PCduino | RobotElectronics 系列 | MageDok 顯示屏 | LCD/LCM/TFT/LVDC | Dimension Engineer 系列 | 通訊模組 | 影音器材(含轉換器) | 線材/連結器/轉換器 | 測量儀器 | 馬達/馬逹控制器/電源模組 | 其他 | 焊接/維修工具 | IC零件 | LED燈-裝飾燈 | 工作站迷你電腦 mini PC | 擴大器 | 雕刻機 | 電池 | 電腦周邊 | 檢定考套件 | 停售商品
  首頁 » 商品目錄 » Pololu 系列 » DRVXXXX系列 » 43526230
商品搜尋 進階
 |  購物車內容  |  結帳   
商品分類
  DRVXXXX系列
  Electronics
  G2 High-Power Motor Drivers
  Mechanical Components
  Motion Control Modules
  Robot Kits
  Sensors
Arduino
Pololu
Seeed
Sparkfun
robot-electronics
dimensionengineering
libelium
adafruit
udoo
redbearlab
Arducam
goembed
Saleae
okdo
服務台
公司簡介
退換貨服務
訂購方式
聯絡我們
匯款確認
[<< 前一頁]  瀏覽相同分類產品 2 / 10  [下一頁 >>]
▼DRV8833 步進電機驅動器 Dual Motor Driver Carrier(PI2130)
NT$600
運費NT$50
條碼43526230
產品說明0

※本產品原廠代理從國外進口,有些交期較長,下訂前請詢問!

This tiny breakout board for TI’s DRV8833 dual motor driver can deliver 1.2 A per channel continuously (2 A peak) to a pair of DC motors. With an operating voltage range from 2.7 to 10.8 V and built-in protection against reverse-voltage, under-voltage, over-current, and over-temperature, this driver is a great solution for powering small, low-voltage motors.

OvervieW 

Texas Instruments’ DRV8833 is a dual H-bridge motor driver IC that can be used for bidirectional control of two brushed DC motors at 2.7 to 10.8 V. It can supply up to about 1.2 A per channel continuously and can tolerate peak currents up to 2 A per channel for a few seconds, making it an ideal driver for small motors that run on relatively low voltages. Since this board is a carrier for the DRV8833, we recommend careful reading of the DRV8833 datasheet (1MB pdf). The board ships populated with SMD components, including the DRV8833, and adds a FET for reverse battery protection.

This board is very similar to our DRV8835 dual motor driver carrier in operating voltage range and continuous current rating, but the DRV8835 has a lower minimum operating voltage, offers an extra control interface mode, and is 0.1″ smaller in each dimension. The DRV8833 has a higher peak current rating (2 A per channel vs 1.5 A), optional built-in current-limiting, and no need for externally supplied logic voltage.

For a higher-voltage alternative to this driver, please consider our DRV8801 motor driver carrier.

Features

  • Dual-H-bridge motor driver: can drive two DC motors or one stepper motor
  • Operating voltage: 2.7‌‌–10.8 V
  • Output current: 1.2 A continuous (2 A peak) per motor
  • Motor outputs can be paralleled to deliver 2.4 A continuous (4 A peak) to a single motor
  • Inputs are 3V- and 5V-compatible
  • Under-voltage lockout and protection against over-current and over-temperature
  • Reverse-voltage protection circuit
  • Current limiting can be enabled by adding sense resistors (not included)

Using the motor driver

 

Minimal wiring diagram for connecting a microcontroller to a DRV8833 dual motor driver carrier.

 

In a typical application, power connections are made on one side of the board and control connections are made on the other. The nSLEEP pin is pulled high on the board and can be left disconnected if you do not want to use the low-power sleep mode of the DRV8833. Each of the two motor channels has a pair of control inputs, xIN1 and xIN2, that set the state of the corresponding outputs, xOUT1 and xOUT2; pulse width modulated (PWM) signal can be applied to each of these inputs. The control inputs are pulled low internally, effectively disabling the motor driver outputs by default. See the truth tables in the DRV8833 datasheet for more information on how the inputs affect the driver outputs.

The nFAULT pin is an open-drain output that is driven low by the chip whenever an over-current, over-temperature-or under-voltage condition occurs. Otherwise, it remains in a floating state, so you will need to connect an external pull-up resistor (or use a microcontroller input with its built-in pull-up enabled) if you want to monitor fault conditions on the driver.

Pinout

 

 

PIN Default State Description
VIN   2.7‌–10.8 V motor power supply connection. Operation with VIN below 5 V slightly reduces the maximum current output.
VMM   This pin gives access to the motor power supply after the reverse-voltage protection MOSFET (see the board schematic below). It can be used to supply reverse-protected power to other components in the system. It is generally intended as an output, but it can also be used to supply board power.
GND   Ground connection points for the motor power supply and control ground reference. The control source and the motor driver must share a common ground.
AOUT1   The motor A half-bridge 1 output.
AOUT2   The motor A half-bridge 2 output.
BOUT1   The motor B half-bridge 1 output.
BOUT2   The motor B half-bridge 2 output.
AIN1 LOW A logic input control for motor channel A. PWM can be applied to this pin.
AIN2 LOW A logic input control for motor channel A. PWM can be applied to this pin.
BIN1 LOW A logic input control for motor channel B. PWM can be applied to this pin.
BIN2 LOW A logic input control for motor channel B. PWM can be applied to this pin.
nSLEEP HIGH Sleep input: when this pin is driven low, the chip enters a low-power sleep mode. (Labeled SLP on the board silkscreen.)
nFAULT FLOAT Fault output: driven low in the event of an over-current, over-temperature, or under-voltage condition; floating otherwise. (Labeled FLT on the board silkscreen.)
AISEN   Current sense pin for motor A. This pin is connected to ground and does not function by default, but current limiting can be enabled by making the modifications described below.
BISEN   Current sense pin for motor B. This pin is connected to ground and does not function by default, but current limiting can be enabled by making the modifications described below.

Current limiting

The DRV8833 can actively limit the current through the motors by using a fixed-frequency PWM current regulation (current chopping). By default, this carrier board connects the current sense pins to ground, disabling the current limiting feature. To enable current limiting, you can use a knife to cut the break points on the back of the board and then solder some appropriate current sense resistors to the unpopulated pads on the front, as indicated in the image below. The pads are sized for 1206 surface-mount resistors. Refer to the DRV8833 datasheet for information on how the resistor value determines the chopping current.

 

 

Real-world power dissipation considerations

The DRV8833 datasheet recommends a maximum continuous current of 1.5 A per motor channel. However, the chip by itself will overheat at lower currents. For example, in our tests at room temperature with no forced air flow, the chip was able to deliver 1.5 A per channel for about a minute before the chip’s thermal protection kicked in and disabled the motor outputs, while a continuous current of 1.2‌–1.3 A per channel was sustainable for many minutes without triggering a thermal shutdown. The actual current you can deliver will depend on how well you can keep the motor driver cool. The carrier’s printed circuit board is designed to draw heat out of the motor driver chip, but performance can be improved by adding a heat sink. Our tests were conducted at 100% duty cycle; PWMing the motor will introduce additional heating proportional to the frequency.

This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.

Included hardware

Two 1×8-pin breakaway 0.1″ male headers are included with the DRV8833 dual motor driver carrier, which can be soldered in to use the driver with perfboards, breadboards, or 0.1″ female connectors. (The headers might ship as a single 1×16 piece that can be broken in half.) The right picture above shows the two possible board orientations when used with these header pins (parts visible or silkscreen visible). You can also solder your motor leads and other connections directly to the board.

Schematic

 

Schematic diagram of the DRV8833 dual motor driver carrier.

問與答

目前沒有任何商品問答!
本商品上架日期:2013-05-24.
評價
購物車 更多
空的...
查詢訂單狀態
 
請輸入您的訂單編號
商品通知狀態 更多
通知▼DRV8833 步進電機驅動器 Dual Motor Driver Carrier(PI2130)
更新時通知我
推薦給朋友
 
推薦這個商品給朋友

聯絡方式:手機:0933807110 或 0968222607
E-mail:[email protected](主要信箱) & [email protected](次要) & [email protected] & [email protected] & [email protected]